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Small scale coherent vortex generation in drift wave-zonal flow turbulence
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We present a paradigm for the generation of small scale coherent vortex (SSCV) in drift wave-zonal
flow (DW-ZF) turbulence. We demonstrate that phases of DWs can couple coherently, mediated by
the ZF shearing. A SSCV is formed when the phases of the DWs are “attracted” to form a stable
“phase cluster.” We show that the ZF shearing induces asymmetry between “attractive” and
“repulsive” phase couplings, so that a net attractive phase coupling results. The turbulent DWs will
(partially)synchronize into a stable SSCV at locations, where the attractive phase coupling induced by
the ZF shearing exceeds the “detuning” effects by the DW dispersion and random phase scattering.
We also discuss the “self-binding” effect of the newly formed SSCV. VC 2015 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4938044]

I. INTRODUCTION

Small scale coherent vortex is ubiquitous in drift wave-
zonal flow (DW-ZF) turbulence. A SSCV is an ordered phys-
ical entity emerging from the disordered DW turbulence. In
reality, SSCVs exhibit as intermittency of various turbulent
flux, e.g., particle flux and heat flux in the edge of magneti-
cally confined plasmas.1,2 The conventional closure models
for turbulence hierarchy equations cannot reproduce all
aspects of the SSCV. A limitation of standard approaches is
that their use of the random phase approximation, which ex-
plicitly fails to account for coherent interaction among the
phases of the DWs. Since the SSCV has no clear scale sepa-
ration from the incoherent DW fluctuations, the use of
perturbative analysis for SSCV formation is strongly
limited. Numerical simulations in fluid turbulence showed
that the generation of SSCV largely follows the shearing
by a large scale flow.3,4 In other words, non-local interaction
in wavenumber space plays a crucial role in SSCV
generation.

In this work, we propose a new mechanism to SSCV
formation—ZF-induced phase synchronization of DWs.
Phase synchronization is a useful concept for describing co-
operative phenomena (e.g., pattern formation) in multi-
degree-of-freedom systems.5 The classical Kuramoto phase
oscillator model6 proved that a secondary oscillator would
emerge once the strength of phase coupling between the ele-
mentary oscillators exceeds a critical value. It is not a sur-
prise that, in the quasi-steady DW-ZF turbulence, the
dynamical behavior of each DW is governed by its phase
evolution. Nonlinear interactions among different DWs are,
in turn, determined by their phase couplings. In this work,
we found the phase evolution of each DW obeys a Kuramoto
equation with a net “attractive” phase coupling induced by
ZF shearing, so that a stable “phase cluster” is formed via
super-critical bifurcation. Within the phase cluster, the
trapped DWs coherently couple with each other—a SSCV

emerges. We also argue that the newly formed SSCV may
exhibit “self-binding” effect. Our new approach is non-
perturbative and so is more broadly applicable.

II. THE PHASE EVOLUTION EQUATION OF THE
DW-OSCILLATOR

We develop the theory in the context of the Charney-
Hasegawa-Mima (CHM) turbulence system.7,8 This system
is a fundamental model describing linear and nonlinear dy-
namics in geostrophic- and magnetically confined plasma
turbulence. The Fourier representation of the CHM equation
is

@

@t
/kþ i

x";e
1þq2

s k2
/kþ

X
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s
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(1)

where /k is the velocity stream function (it is also electro-
static potential for the plasma application). The coordinate
framework we used is sketched in Fig. 1. Without nonlinear
interaction, each DW oscillates at its linear frequency,

x";e
1þq2

s k2,
with x*,e the electron diamagnetic frequency and qs the ion-

FIG. 1. Set up of the analysis. The ẑ direction is perpendicular to the (x, y)
plane.
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sound Larmor radius. The nonlinear interaction FNL can be
discomposed into a long-short interaction piece(FLS) and a
short-short(FSS) piece

FNL ¼ FLS þ FSS; (2)

with

FLS ¼
X

~k 0þ~q ¼ ~k;
jqj) jk0j * jkj

q2
s

~k 0 $~q % ẑ
1þ q2

s k2
k02 & q2
" #

/k0/q; (3)

FSS ¼
X

~k 0þ~k 00 ¼ ~k;
jkj * jk0j * jk00j

q2
s

~k 0 $ ~k 00 % ẑ
1þ q2

s k2
k02 & k002
$ %

/k0/k00 ; (4)

where ~q ¼ qx̂ is the mode number of the ZFð/qÞ, mediating
mode coupling between /k and /k0 . /k can be rewritten as
/k ¼ j/kjeiS with S¼ S(x, t, k) is the Eikonal phase. Where
the temporal behavior of the phase in k–space is concerned,
we simply set its spatial dependence in a linear form, i.e.,

S ¼ hkðtÞ þ ~k %~x: (5)

So that hk is independent of spatial variable, and we have
@hk/@t¼ dhk/dt. FLS can then be written as

FLS ¼
X

~k 0þ~q¼~k ;jqj)jk0 j*jkj

q2kyq2
s k2

1þ q2
s k2
j/qj

@j/kj
@kx

ei hqþhk0ð Þþi~k %~x : (6)

Here, j/k0 j has been approximated by Taylor expansion of k0

about k, j/k0 j ’ &q @
@kx
j/kj. In the absence of phase synchro-

nization, the phases of the DWs are randomly distributed, so
that the short-short interaction obeys a random phase approx-
imation and FSS can be modeled as noise, which is relevant
to turbulent phase mixing.9 Really, coherent phase coupling
comes via long-short interaction, so long-short interaction
does the synchronization, while short-short interaction drives
noise.

Regarding the phase dynamics of the DW modes, we
make the following assumption: the turbulence is in a nonli-
nearly saturated quasi-steady state, i.e., @tlnj/kj) @tlnjhkj.
The phase of the straining field changes slowly, so that we
simply choose hq as a constant and hq¼ 0 without loss of
generality. According to Eq. (1), the evolution of hk is
derived as

d

dt
hk ¼ &xk þ

X

k0
CkV0ZF;q sin hk0 & hkð Þ þ sk; (7)

where xk ¼ x";e
1þq2

s k2 and V0ZF;q ¼ &q2j/qj is the shear-rate of
the ZF. sk accounts for random phase scattering induced by
the short-short interaction, and the coupling coefficient is

Ck +
kyq2

s k2

1þ q2
s k2

1

2j/kj
2

@j/kj
2

@kx
: (8)

Since the structure of the turbulence spectrum will be modu-
lated by the ZF shearing, one can expect that the averaged
Ck is also a function of the ZF shear. Eq. (7) describes a

generalized Kuramoto system—the most representative
model of synchronization phenomena in populations of
coupled oscillators.10 In deriving Eq. (7), we assumed all the
phases of the large scale field take the same value (i.e.,
hq¼ 0). A more general case is that different /q has different
hq, which is equivalent to adding a random phase to phase
coupling term of Eq. (7). The randomness of hq has an effect
of reducing the coherence of hks. The inclusion of the distri-
bution of hq will not impact our conclusion qualitatively but
increase the complicity of analytical analysis significantly,11

so we ignore this effect in our current work. If CkV0ZF;q > 0,
hk and hk0 are “attractively” coupled, and if CkV0ZF;q < 0,
they are “repulsively” coupled. A net attractive coupling
could facilitate the formation of a phase cluster, and make
the DWs self organize into a SSCV. It has been shown12,13

that the dynamical behavior of Eq. (7) is equivalently cap-
tured by the following reduced equation:

d

dt
hk ¼ &xk þ !CV0ZF

X

k0
sin hk0 & hkð Þ þ sk; (9)

where !C is the averaged phase coupling coefficient, weighted
by the distribution function of the DWs. V0ZF ¼

P
q V0ZF;q is

the total shear-rate. Without long-short interaction, each test
phase experiences linear oscillation (the 1st term on the RHS
of Eq. (9)) and nonlinear random scattering (the 3rd term on
the RHS of Eq. (9)), so the conventional mixing length
theory is applicable. For DW-ZF turbulence, the population
of the DWs is proportional to its potential enstrophy inten-
sity,9 Xk ¼ 1

2 ð1þ q2
s k2Þ2j/kj

2. Then, we have

!C ¼

P
k

kyq2
s k2

1þq2
s k2

1
2j/k j

2
@j/k j

2

@kx
Xk

P
k Xk

: (10)

Since the ZF can modulate the radial wavenumber of the
DW, Xk is also a function of V0ZF. To calculate the radial
wavenumber variation by ZF shearing, we employ the ray
equation, @tkx ¼ &kyV0ZF. Then, we obtain Dkx ¼ &kyV0ZFDt.
Since the Dt can not exceed the correlation time (Dx&1) of
the DW turbulence, we simply set Dt ’ Dx&1

k and thus we
have Dkx ’ &kyV0ZF=Dxk. Because of the slow change of the
ZF, Xk approximately undergoes an adiabatic variation, so
that we have Xk ¼ X0ðkx & Dkx; kyÞ ’ X0;k þ Dkx@kxX0;k

with X0,k the potential enstrophy in the absence of ZF.
Substituting it into Eq. (10) yields

!C ’ 1

X

X

k

k2
yq

2
s k2

1þ q2
s k2

1

2Dxkj/kj
2

@j/kj
2

@kx

@X0;k

@kx
V0ZF + bV0ZF;

(11)

where X ¼
P

k Xk is the total potential enstrophy intensity. b
scales with DW turbulence decorrelation time, b*D x&1. For
a normal profile of DW spectrum with @kx j/kj

2@kxXk > 0, we
have

!CV0ZF ¼ bV02ZF > 0: (12)

As a result, the ZF shearing induces a net positive phase
coupling—a necessary condition of forming a phase
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cluster/SSCV. Physically, because of the coherent phase-
coupling among the DWs (induced by the ZF shearing), the
ray trajectories of the DWs are nonlinearly modulated. As a
result, some wave-packets approach to each other, are
trapped, and then form a SSCV.

III. PHASE SYNCHRONIZATION OF THE
DW-OSCILLATORS

An illuminating way to quantitatively describe the col-
lective behavior of hk is to introduce an order parameter6

reiH ¼ 1=N
P

k eihk with N the total number of the DW-
packets. r is a real number charactering the coherence of the
DW phases: r¼ 0 (r¼ 1) for completely incoherent(coher-
ent) state and 0< r< 1 for partially coherent state. H is the
average phase describing the collective oscillation of the
DWs (Fig. 2). Without loss of generality, we can always set
H¼ 0 as measured in a certain rotating frame.10 Taking the
continuous limit (from now on, we remove the subscript k)
yields

r ¼
ð ð

eihqðh;x; tÞgðxÞdhdx: (13)

Here, q(h, x, t) is the distribution of h at fixed frequency x,
and g(x) is the distribution of x. q(h, x) and g(x) satisfy the
normalization conditions:

Ð
qðh;xÞdh ¼ 1 and

Ð
gðxÞdx ¼ 1.

Employing Eq. (13), Eq. (9) can be rewritten as6

d

dt
h ¼ &xþ bV02ZFr sin hþ s: (14)

Eq. (14) is a reduced governing equation of the evolution of
the DW phase. The phase dynamic of each DW-oscillator is
determined by the competition of the detuning effects (the
linear wave dispersion and the noise effect) and the pining
effect (ZF shearing). For the purpose of illustrating the
essential physics, we make a detail discussion of the weak
noise scenario. The weak noise scenario corresponds to a
region with strong ZF shearing. Because the DW turbulence
has a spatial distribution and the turbulence intensity can be

large in other locations, and so, on the average, the turbu-
lence does not collapse. Then, Eq. (14) exactly corresponds
to the original Kuramoto model

d

dt
h ’ &xþ bV02ZFr sin h: (15)

Solutions of Eq. (15) fall into two groups: phase-locked ones
(jxj < bV02ZF) and phase-slipping ones (jxj > bV02ZF). For the
phase-locked solution, h is attracted to a mean value and

h ¼ arcsin
x

bV02ZFr
: (16)

For the phase-slipping ones, each h moves in a nonuniform
way (Fig. 2). The ZF shearing plays a crucial role in deter-
mining the value of r. For example, in locations with strong
flow shearing, the detuning effects associated with the linear
frequency dispersion is negligible, so all the DW oscillators
are attracted to the same phase and evolve into a completely
synchronized state, r ! 1. Here the strong shearing can be
sustained via turbulence spreading. It is worth to point out
that the strong shearing scenario does not contradict to turbu-
lence suppression theory,14 because the ZF has a spatial dis-
tribution and its shear rate can be below the threshold in
other locations. Thus, on the average, the DW turbulence
does not collapse. In the weak noise scenario, a critical
shear-rate for the transition from incoherent state to coherent
state (formation of a SSCV) can be derived by using the self-
consistency condition between Eqs. (13) and (15) and it is10

V02ZF;c ¼
2

bpg !xð Þ
; (17)

where !x is the centroid frequency of the DW frequency dis-
tribution function g(x). For a homogeneous distribution,
gð!xÞ ¼ 1

!x, one has

V02ZF;c ¼
2

bp
!x ’ 2

bp
Dx!x: (18)

Therefore, the critical ZF shear-rate for the generation of a
SSCV is proportional to the geometry average of Dx and !x,
i.e.,

V0ZF;c *
ffiffiffiffiffiffiffiffiffiffiffi
Dx!x
p

: (19)

Once V02ZF > V02ZF;c, a phase cluster (i.e., a SSCV) will form
(Fig. 2). This scaling is consistent the scaling obtained by
requiring the pinning effect exceeds the detuning effect in
Eq. (15). It has also been proved that the newly formed
organized state is stable.15 Near the transition point, r takes
the form

r ’ 4

b2V04ZF;c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b

&pg !xð Þ00

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V02ZF & V02ZF;c

q
; (20)

where &gð!xÞ00 > 0 for generic case, e.g., the Gaussian distri-
bution. So, near the critical point (r ! 0þ) @r=@V02ZF *
ðV02ZF & V02ZF;cÞ

&1=2 ! þ1, and the generation of a SSCV is a
supercritical bifurcation process.

FIG. 2. Sketch of a phase cluster in a phase ring: black points—phase slips
with hk0 the phase of the incoherent DW, red points—phase locked with H
the phase of the coherent DWs.
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The stream function of the newly formed SSCV can be
written as /SSCV ¼

P
j/kj expði~k %~xÞ with the sumation

being over all the phase locked DWs. The amplitude of the
SSCV is strongest at the center (x¼ 0). Away from x¼ 0, ~k %~x
will induce phase differences among different modes, so that
the synchronized DWs start to loss coherence in space. This
process limits the spatial extent (lSSCV) of the SSCV, and it can
be estimated as lSSCV’ Dk&1 with Dk&1 the width of the wave-
number spectrum of the synchronized DWs. An interesting
deduction is that the larger the population of the trapped DWs,
the smaller the spatial extent of the SSCV will be. The reason
is that more DWs usually mean a broader wavenumber spec-
trum, so that Dk&1 is smaller.

IV. SELF-BINDING EFFECT

Along with the formation of a phase cluster, the short-
short phase coupling among the to-be-synchronized DWs
changes from incoherent coupling to coherent one.
Therefore, FSS is not a pure noise any more, but exhibits co-
herence. The newly generated coherent coupling adds a term

Im
FSS

j/kj

) *
¼ ar sin h; (21)

to the phase evolution equation of the trapped DW (Eq.
(15)). The coupling coefficient is

a ¼
X

jkj*jk0 j*jk00j
q2

s

~k 0 $ ~k 00 % ẑ
1þ q2

s k2
k02 & k002ð Þ j/k0 jj/k00 j

j/kj

Generally, a is nonzero. If it is positive, the short-short inter-
action among the trapped DWs exerts another “pinning”
force on themselves—the self-binding effect. Then that the
SSCV may be sustained even if the ZF shearing is reduced to
below its threshold. Physically, this is equivalent to forming
a transport barrier by the SSCV itself. If the coefficient is
negative, the short-short interaction tends to reduce the
effective shear-rate of the ZF, so that a stronger ZF shearing
is required to maintain such a SSCV.

V. CONCLUSION

A new mechanism, based on phase synchronization, of
SSCV is proposed. The SSCV corresponds to a stable phase

cluster of the DWs. In the quasi-steady state, it is shown that
ZF shearing induces a net positive couplings among the short
scale DWs and, so that, facilitates the formation of the phase
cluster. Our theory provides a new angle to look at various
SSCV phenomena in turbulence system. For future research,
it is important to: (1) explore the feedback of the SSCV on
the ZF and (2) extend the current 0D theory to 1D scenario,
i.e., including phase-phase coupling in configuration space.
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